105. Chemie von α -Aminonitrilen

22. Mitteilung¹)

Regioselektive Synthese und Kristallstruktur von Uroporphyrinogen-(Typ I)-octanitril

von Christian Lehmann²)*, Bernd Schweizer, Christian Leumann³) und Albert Eschenmoser⁴)

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätsstrasse 16, CH-8092 Zürich

Oskar Jeger zum 80. Geburtstag gewidmet

(11. IV. 97)

Chemistry of α-Aminonitriles. Regioselective Synthesis and Crystal Structure of Uroporphyrinogen (Type I) Octanitrile

A regioselective synthesis of uroporphyrinogen-octanitrile (type I) based on the strategy of multiple use of (dimethylmethylidene)ammonium iodide for stepwise regioselective functionalization of the pyrrole nucleus is described. This uroporphyrinogen derivative is remarkably stable and beautifully crystallizes in space group $P\bar{1}$ with one molecule per unit cell. The crystal structure of the compound shows interesting conformational characteristics which are interpreted to be caused by subtle stereoelectronic effects.

The English Footnotes to Schemes 1-3 and Figs. 1-12 provide an extension of this summary.

1. Einleitung. – Vor rund einem Jahrzehnt haben wir uns eingehend mit der Chemie hydroporphinoider Verbindungen beschäftigt [4–6]. Es waren dies Arbeiten, die wir aus heutiger Sicht als Ansätze zu einer chemischen Aetiologie [7] der Strukturtypen der natürlichen Porphinoide, allen voran des Strukturtyps des Vitamins B_{12} [8], beschreiben würden. Eine besondere Rolle spielten dabei die Nitril-Formen der vier isomeren Uroporphyrinogene [1] [9] [10]. Unter anderem interessierte uns die Frage, ob es ausgehend von der Nitril-Form des Uroporphyrinogens (Typ III) nitrilformspezifische Wege eines Zugangs zu den Strukturtypen des Hämins und der Chlorophylle gibt⁵) [3] [11–13]. Die dabei gemachten experimentellen Erfahrungen sprachen schliesslich eher dagegen, jedenfalls haben sie uns nicht zu einer Fortsetzung oder gar Ausweitung der Suche nach

¹) 1. Mitteilung: [1], 21. Mitteilung: [2].

²) Vgl. Promotionsarbeit ETH-Zürich [3]; derzeitige Anschrift: Institut de Chimie Organique, Université de Lausanne, Dorigny-BCH, CH-1015 Lausanne.

³) Derzeitige Anschrift: Departement für Chemie und Biochemie der Universität Bern, Freiestrasse 3, CH-3012 Bern.

⁴) Die in dieser Arbeit beschriebenen Experimente wurden im Zeitraum 1982-86 im Rahmen der Promotionsarbeit von C. Lehmann [3] durchgeführt. Die im Diskussionsteil erwähnte molekülmechanische Modellrechnung ist von C. Lehmann nachträglich durchgeführt worden (A.E.).

⁵) Unterstellt man der CN-Gruppe die Eigenschaft, als elektrophile Abgangsgruppe in baseninduzierten Eliminationsreaktionen agieren zu können, so liegt Uroporphyrinogen-(Typ III)-octanitril formal auf der gleichen Oxidationsstufe wie Phaeophorbid a, d. h., wie das porphinoide Ligandsystem des Chlorophylls a (vgl. eine Formulierung solcher Zusammenhänge in [3] und [12]).

solchen Wegen veranlasst. Bei diesen Untersuchungen haben wir als Untersuchungsobjekt vor allem die Nitril-Form des Uroporphyrinogens (Typ I) benützt [1] [10]. Diese Verbindung ist auf Grund ihrer konstitutionellen Symmetrie auf dem biomimetischen Wege der säurekatalysierten Tetramerisierung⁶) geeigneter Monopyrrol-Vorläufer unter nicht equilibrierenden Bedingungen unter allen vier Uroporphyrinogen-octanitrilen die in einheitlicher Form am leichtesten zugängliche. Wir haben damals zwei präparativ leistungsfähige Synthesen für solche Monopyrrol-Vorläufer ausgearbeitet [3] (vgl. auch [1] [9]); diese stellen durch ihren mehrfachen Einsatz des (Dimethylmethyliden)ammonium-iodids [15] illustrative Beispiele für die Möglichkeit der stufenweisen regioselektiven Funktionalisierung des Pyrrol-Kerns durch das genannte Reagens dar 7). Darüberhinaus war es auch gelungen, das Uroporphyrinogen-(Typ I)-octanitril zu kristallisieren und seine Kristallstruktur mit guter Genauigkeit zu bestimmen. Diese Röntgen-Strukturanalyse ist unseres Wissens bis heute die einzige eines Derivats aus der Familie der vier Uroporphyrinogene geblieben⁸). Dies und nicht zuletzt auch die Tatsache, dass wir in einer früheren Arbeit [1] explizite die Beschreibung einer verbesserten Variante der Herstellung eines Monopyrrol-Vorläufers für die Synthese des Uroporphyrinogen-(Typ I)octanitrils für später in Aussicht gestellt hatten, veranlasst uns zur nachträglichen Veröffentlichung dieser Daten.

2. Synthese von Uroporphyrinogen-(Typ I)-octanitril. – Jegliches Synthesekonzept für eine chemische Synthese der Titel-Verbindung folgt sinnvollerweise dem von der Natur in ihrer Biosynthese des Uroporphyrinogens (Typ III) vorgezeichneten Prinzip der Tetramerisierung eines Monopyrrol-Vorläufers (*Fig. 1*). Dabei ist diese Tetramerisierung unter kinetischer Kontrolle durchzuführen, denn nur dadurch lässt sich die Bildung der isomeren Uroporphyrinogen-Typen II, III und IV via eine nachträgliche, durch thermodynamische Kontrolle zustande kommende Isomerisierung vermeiden. Wie wir in unserer früheren Arbeit über die vier Uroporphyrinogene erfahren haben [1] [9], eignen sich die gegenüber solcher Isomerisierung im Vergleich zu den natürlichen Uroporphyrinogen-

Fig. 1. Monopyrrol-Vorläufer*)

*) Monopyrrolic precursors for the synthesis of uroporphyrinogen-octanitrile

⁶) Über die ursprünglichen Beobachtungen zur biomimetischen Bildungsweise von Uroporphyrinogenen vgl. [14] und über die Durchführung der Tetramerisierung in der Reihe der Octanitrile vgl. [1].

⁷) Das aus Arbeiten über mögliche Zusammenhänge zwischen Amin-Inversion [16] und S_N2-Reaktivität [17] hervorgegangene Reagens (Dimethylmethyliden)ammonium-iodid ist seinerzeit erstmals im Zuge der Arbeiten über die Synthese des Vitamins B₁₂ zur selektiven Funktionalisierung von Enamin-C-Zentren eingesetzt worden [15].

⁸) An Röntgen-Strukturanalysen von Porphyrinogen-Derivaten liegen vor: N,N',N'', Tetramethyl-2,3,7,8,12,13,17,18-octakis(methoxycarbonyl)porphyrinogen-dihydrat [23a]; 5,5,10,10,15,15,20,20-Octamethylporphyrinogen [23b].

Schema 1. Regioselektivität der Funktionalisierung des Pyrrol-Kerns aufgrund der $(\pi$ -Donor/Akzeptor)-Eigenschaften bereits eingeführter Substituenten*)

*) Known trends of regioselectivity in electrophilic substitutions at the pyrrole nucleus containing α, α' - or β, β' -substituents [19]. A = acceptor substituent, D = donor substituent.

octacarbonsäuren merklich stabileren (in ihren Pyrrol-Ringen weniger nucleophilen) Octanitril-Formen ganz besonders gut für die Einhaltung der geforderten kinetischen Kontrolle der Tetramerisierungs-Stufe.

In [1] haben wir als Pyrrol-Vorläufer eine Verbindung verwendet, zu deren Herstellung (vgl. [9]) die β -Stellungen eines synergistisch α, α -disubstituierten Pyrrol-Derivats (D=Cl, A=COOMe; vgl. Schema 1) mit (Dimethylmethyliden)ammonium-iodid funktionalisiert und die beiden α -Substituenten anschliessend entfernt wurden. Die hier zu beschreibende, nachträglich entwickelte und präparativ einfachere Synthese eines Monopyrrol-Vorläufers besteht in der Funktionalisierung eines synergistisch β,β -disubstituierten Pyrrol-Derivats (D=CH₂CN, A=CH₂N⁺Me₃), welches seinerseits durch sukzessive Funktionalisierung mit CH₂=N⁺Me₂I⁻ ausgehend von unsubstituiertem Pyrrol erhalten wird (vgl. [1]). Beide Synthese-Konzepte entsprechen bekannten Grundsätzen der Chemie der Pyrrole [19], und die Rationalisierung der in den beiden Varianten zu erwartenden Regioselektivität der Funktionalisierungsstufe folgt der in der Chemie der Pyrrole üblichen Argumentation. Der Ablauf der nach dem zweiten Konzept durchgeführten Synthese des Monopyrrol-Vorläufers 9 aus Pyrrol ist im Schema 2 zusammengefasst.

Das im Zuge der früheren Arbeiten [1] auf dem Wege $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ hergestellte quaternäre Ammonium-Salz 5 bietet kraft seines Substitutionsmusters an den β -Stellungen des Pyrrol-Kerns die Möglichkeit, regioselektiv an der dem positiv geladenen Substituenten am weitesten entfernten α -Position elektrophile Substitutionen einzugehen (vgl.

Schema 2. Schrittweiser Aufbau des PBG-analogen Substitutionsmusters unter mehrfacher Anwendung von $CH_2 = N^+ Me_2 I^{-*}$)

*) Stepwise functionalization of the pyrrole nucleus by multiple use of CH₂=N⁺Me₂I⁻ [15] as the electrophile. Key step of the sequence is the highly efficient transformation 5→6 in an anhydrous two-phase system. Homogeneity and isomeric purity of the microcrystalline pyrrole-diammonium iodide 6 are corroborated by ¹H-NMR NOE spectroscopy (cf. Fig. 12, Exper. Part). Aceto- and propionitrile side chains are introduced after quaternarization of the respective (dimethylamino)methyl groups via S_N2/EA reactions with KCN or lithium acetonitrilate at the appropriate stages of the synthesis. Transformation of the quaternary ammonium group of 7 into the α-(methoxymethyl) functionality of the desired monopyrrole 9 required conditions typical for S_N1/E1 reactions.

Schema 1). In orientierenden Versuchen, die zur Abklärung dieser Selektivität für den Fall der elektrophilen Substitution mit $CH_2=N^+Me_2I^-$ angestellt wurden, gelangte man in wenigen Ansätzen zu den im Schema 2 aufgeführten Bedingungen, unter denen sich mit hoher Ausbeute und Regioselektivität das Substitutionsprodukt 6 bildet. Wurde die Reaktion bei 120° durchgeführt, so konnte man gemäss 300-MHz-¹H-NMR-Spektrum anhand des Integrals der Vinyl-Protonen bei 7,20–7,30 ppm bzw. 7,30–7,40 ppm noch 10–15% des isomeren α -Substitutionsproduktes feststellen, bei optimierten Bedingungen (3 Tage in einer zugeschmolzenen Ampulle bei 70°) jedoch nur noch ein Isomeres. Die Reaktionsführung war insofern ungewöhnlich, als zu jedem Zeitpunkt eine feste Phase (pyrrolische Ammonium-Salze) nebst der eigentlichen Reaktionslösung (pyrrolische Ammonium-Salze und $CH_2=N^+Me_2I^-$, gelöst in wasserfreiem MeCN) vorlag. Die Lösungsmittelmenge (6,0 ml MeCN/500 mg Pyrrol-ammonium-iodid 5) war so bemessen, dass am Ende der Reaktion über 90% des von allen Reaktanden am schwersten löslichen Doppelsalzes 6 mikrokristallin (und im wesentlichen analysenrein) anfiel.

Der Konstitutionsnachweis für **6** beruht auf ¹H-NMR-NOE-Differenz-Spektroskopie (vgl. *Fig. 12* im *Exper. Teil*): Einstrahlung auf das Me-Signal der quaternären Ammonium-Gruppe bei 3,04 ppm bewirkt eine Signal-Verstärkung bei 4,46 ppm ($CH_2N^+Me_3$), 4,05 ppm (CH_2CN) und – entscheidend – beim *Dublett* der Vinyl-Protonen bei 7,32 ppm. Einstrahlung auf das Me-Signal der tertiären Ammonium-Gruppe bei 2,79 ppm hat einen NOE-Effekt auf die beiden NH-Signale (Pyrrol-NH bei 9,40 ppm, Me₂NH⁺CH₂ bei 11,52 ppm) sowie auf die mittlere (4,37 ppm) der drei CH₂-Resonanzen zwischen 4,0 und 4,5 ppm, die deshalb eindeutig auf die neu eingeführte α -CH₂NH⁺Me₂-Funktionalität zurückzuführen ist.

So willkommen die direkte Abscheidung des Bis(ammonium-iodids) 6 in der präparativen Durchführung dieser Stufe war, so sehr machte uns die Mikrokristallinität dieses Iodids im nachfolgenden Synthese-Schritt $6 \rightarrow 7$ zur Einführung der Propionitril-Kette zunächst Schwierigkeiten. In orientierenden Vorversuchen ausgehend von nicht-kristallinen (öligen) Proben von 6 war das gewünschte N,N-Dimethylporphobilinogen-dinitril (7) in zwar ungenügender Ausbeute (10-15%), aber doch ¹H-NMR-spektroskopisch eindeutig nachweisbar isoliert worden. Bei Verwendung von später analysenrein erhaltenem Doppelsatz 6 schien dann aber jeder Erfolg auszubleiben, dies trotz des Befunds. dass das in fester Form in eine wie früher [1] [9] erzeugte, gekühlte Lösung von Lithiumacetonitrilat in THF⁹) eingetragene pyrrolische Ammonium-Salz 6 relativ rasch abreagierte und dabei eine homogene Lösung entstand. Erst nachdem wir 6 durch DMEUund (i-Pr), NH-Zusatz in wasserfreiem THF lösten und anschliessend langsam zur auf -78° gekühlten Acetonitrilat-Lösung tropften, stellte sich der Erfolg wieder ein: wir isolierten 46% chromatographisch einheitliches N,N-Dimethylporphobilinogen-dinitril (7), das in allen spektroskopischen Daten mit unabhängig hergestelltem Material (nichtselektive Mannich-Alkylierung in α-Stellung und chromatographische Trennung der isomeren (Dimethylamino)methyl-pyrrole, vgl. [9]) übereinstimmte. Vermutlich handelte es sich bei dem beobachteten Phänomen um eine lösungskinetische Reaktivitätsmaskierung.

 ⁹) Zur Verbesserung der Löslichkeit wurden jeweils noch 10-15% N,N^r-Dimethylethylenharnstoff (DMEU)
 [20] zugesetzt.

Mel fällt bei Raumtemperatur aus einer gesättigten Lösung von 7 in CH_2Cl_2 , Et_2O 1:1 quantitativ dessen quaternäres Ammonium-Salz 8 aus. Dieses ist durch Ammonolyse leicht in die Dinitril-Form von Porphobilinogen (PBG) überführbar (vgl. [9]). Dass der Austausch der quaternären Ammonium-Gruppe in 8 unter basischen Bedingungen – wie dies bei der Ammonolyse unumgänglich ist – durch partielle S_N2 -Me-Rücksubstitution zum Edukt 7 erheblich konkurrenziert wird, wurde auch bei der Methanolyse festgestellt. Versuchten wir diese mit MeONa in MeOH, wurden nur geringe Mengen 2-(Methoxymethyl)pyrrol 9 nebst rücksubstituiertem (Dimethylamino)methyl-pyrrol 7 nachgewiesen; verwendeten wir jedoch absolutes (neutrales) MeOH bei erhöhter Temperatur im Autoklaven, gelang der Austausch zu 9 in Ausbeuten gegen 80% (vermutlich auf dem Wege einer solvolytisch ausgelösten ($S_N1/E1$)-Reaktion).

Die abschliessende Tetramerisierung von 9 (vgl. Schema 3) verlief ganz analog zu der früher beschriebenen [1], von 3-(2-Cyanoethyl)-4-(cyanomethyl)-2-(hydroxymethyl)pyrrol ausgehenden Reaktion. Wiederum wurden hier neben 55% Uroporphyrinogen-(Typ I)octanitril (10) grössere Mengen (ca. 40%) polaren Materials isoliert, wobei es sich mehrheitlich um ein Gemisch linearer oder höherer cyclischer Oligopyrromethane handelte. Die Bildung von Oligomeren scheint massgeblich durch den Konstitutionstyp des verwendeten Substrats bedingt zu sein¹⁰) und erinnert natürlich an die via analoge, aber enzymgebundene Oligomere verlaufende Biosynthese des natürlichen Uroporphyrinogens-(Typ III) [22]. Das auf diesem Wege erhaltene Hauptprodukt Uroporphyrinogen-(Typ I)-octanitril konnte durch Chromatographie an desaktiviertem Kieselgel unter O₂-Ausschluss in einer Reinheit isoliert werden, welche die nachstehend beschriebene röntgenanalytische Charakterisierung als porphyrin-freies Uroporphyrinogen-Derivat erlaubte. Zwar konnten lösungsmittelfreie Kristalle von 10 durch isotherme Diffusion bei Raumtemperatur unter einer Inertatmosphäre relativ leicht erhalten werden (trikline Plättchen, Schmp. 244–245°; vgl. Fig. 13 im Exper. Teil), doch nur die Verwendung des Lösungsmittelsystems THF/H₂O ergab Einkristalle von röntgenstrukturanalytisch geeigneten Dimensionen.

3. Kristallstruktur von Uroporphyrinogen-(Typ I)-octanitril. – Uroporphyrinogen-(Typ I)-octanitril (10) kristallisiert in der Raumgruppe $P\overline{1}$ mit einem Molekül des Nitrils sowie zwei Molekülen THF pro Elementarzelle. Das Ergebnis der Kristallstruktur-Analyse ist als Stereoprojektion in *Fig. 2* zusammengefasst. Mit einem *R*-Faktor von 4,2% (vgl. *Tab. 1* im *Exper. Teil*) für eine Messung bei Raumtemperatur darf die Struktur als gut aufgelöst bezeichnet werden. Der Makrocyclus nimmt eine zentrosymmetrische Doppelsessel-Konformation ein. Die makrocyclische Kernstruktur mit beidseitig bifurcal komplexierten THF-O-Atomen bildet eine abgeschlossene, H-verbrückte Einheit ohne weitere intermolekulare protische Netzkontakte. Dies ist aus der Stereoprojektion in *Fig. 3* ersichtlich, die das Kristallgitter mit je einem Translationsäquivalent in jeder Richtung mit vollständigem H-Brücken-Netzwerk zeigt, wie dies aus einer Energie-Analyse im MAB-Kraftfeld [24] hervorgeht.

Intermolekulare Kontakte an den Nahtstellen, an denen das Kristallgitter verschweisst ist, bestehen ausschliesslich aus aprotischen Wechselwirkungen. Die antiparal-

¹⁰) So z. B. ist beschrieben [21], dass 4-Ethyl-5-(hydroxymethyl)pyrrol-2-carbonsäure sich in MeOH mit verdünnter HCl unter Decarboxylierung in 92% Ausbeute zu Etioporphyrinogen-(Typ I) tetramerisieren lässt.

Schema 3. Regioselektive Synthese von Uroporphyrinogen-(Typ I)-octanitril (10)*)

*) The cyclotetramerization was carried out similarly to the earlier described version [1] [3] starting from 4-(cyanomethyl)-2-(hydroxymethyl)-1*H*-pyrrole-3-propionitrile (cf. Scheme 22 in [1]). There is concomitant formation of a mixture of linear polypyrromethanes or higher cyclic oligomers. Porphyrinogen 10 was isolated under an inert atmosphere in porphyrin-free form (cf. UV spectrum in Fig. 13, Exper. Part) and could be crystallized from a THF/H₂O mixture (cf. Fig. 2, and Tables 1 and 2).

ò

lele Dipolausrichtung der CN-Gruppen dürfte eine wesentliche Komponente des Kristallgitter-Zusammenhalts darstellen. Ungeachtet der relativ hohen Schwingungsamplituden der Atome an diesen Kontaktzonen liegt die Struktur mit einer berechneten Kristallpackungsdichte $\rho_c = 1,254$ g/cm³ (vgl. *Tab. 1* im *Exper. Teil*) wesentlich über den für Kristallstrukturen von einfachen Nitrilen oder Kohlenwasserstoffen gefundenen Werten (1,157 bzw. 1,198 g/cm³, vgl. [25]), so dass eine energetisch besonders günstige Anordnung der Seitenketten im Kristallgitter anzunehmen ist. Das Ineinandergreifen der lokalen und interresidualen dipolaren Einheiten ist als stereographische Projektion in *Fig. 4* dargestellt.

Nachstehend sei kurz eine qualitative Interpretation der in der Kristallstruktur zu beobachtenden Konformation des Uroporphyrinogen-octanitril-Moleküls wiedergegeben. Dabei behandeln wir die CN-Gruppe als elektronegativen Substituenten¹¹) und verwenden zur Beurteilung 'allylischer' Konformationen das τ -Bindungsmodell (synpla-

¹¹) Vgl. hierzu auch die von Darling (vgl. [27]) bestimmten Röntgen-Strukturen der von Xiang [27] dargestellten cyclischen Aminonitrile cis-Piperidin-2,6-dicarbonitril und meso-trans-2-(Cyanomethyl)hexahydropyrimidin-4,6-dicarbonitril.

Fig. 2. Kristallstruktur von Uroporphyrinogen-(Typ I)-octanitril (10) in ORTEP-Stereoprojektion. H-Brücken zu einem der beiden THF-Moleküle in der Einheitszelle (Pī) sind eingezeichnet*)

*) Stereographic ORTEP projection of the crystal structure of uroporphyrinogen-octanitrile (type I) (10) including one of the two equivalent THF molecules incorporated in the unit cell (PI); the crystal structure does not present a continuous network of H-bonds extending over the crystal lattice, but rather forms a closed H-bonded entity within the centrosymmetrical unit cell complex (cf. Figs. 3 and 4).

Fig. 3. Stereoprojektion der Kristallpackung von 10 in der zentrosymmetrischen Raumgruppe $P\overline{I}$ mit Besetzungszahl $Z = I^*$)

*) Stereoprojection of the crystal lattice of 10 in space group PT: one molecule of tetrapyrrole complexes two molecules of THF in the unit cell (cf. Fig. 2). The crystal lattice extensions including one translation equivalent in each direction are shown with color-coded indication of the two types of H-bonds being present in the crystal lattice (yellow > 4 kcal/mol, red < 4 kcal/mol; cf. [24]). Intermolecular contacts consist only of aprotic dipolar interactions. Considering the strong dipolar character of the CN group, it is apparent that dipole-dipole minimization not only occurs intramolecularly but also extends and primarily is effected intermolecularly along the aprotic dipolar contact zones.</p>

Fig. 4. Stereoprojektion der Kristallpackung von 10. Je zwei asymmetrische Dipyrromethan-Einheiten sind am gitteräquivalenten Symmetriezentrum gespiegelt*)

*) To illustrate crystal packing and orientation of the side chains, two asymmetrical dipyrromethane units are reflected at the lattice symmetry centre between the side chains. Van der Waals surfaces document a nearly ideal side-chain packing ($\rho_c = 1.254 \text{ g/cm}^3$; significantly higher than for average CN-containing (1.157 g/cm³) or hydrocarbon (1.198 g/cm³) crystal structures [25]. The present example presents an exception to the negatively evident correlation of basis dipole moment and centrosymmetry of space group found in the literature [25] [26]. Although the reason for this may reside in intramolecular dipole-dipole coupling, close interresidual dipole-dipole moments as calculated in *Fig. 11*).

nare Anordnung eines allylischen Substituenten mit Doppelbindungsachse entspricht Staffelung der allylischen σ -Bindungen mit τ -Bindungen [28], vgl. Fig. 5). Diese Betrachtungsweise ist hier trotz des Fehlens isolierter Doppelbindungen deshalb gerechtfertigt, weil aufgrund der beobachteten Bindungslängen den pyrrolischen (C(α)-C(β))-Bindungen (um 1,37 Å) bedeutend stärkerer Doppelbindungscharakter zuzuschreiben ist als den (C(β)-C(β '))-Bindungen (um 1,43 Å, vgl. Tab. 2 im Exper. Teil).

Fig. 5. Allylische Konformationen im τ -Bindungsmodell*)

*) Pro memoria: the terms 'staggered' and 'eclipsed' referring to the ligands at saturated bonds can be applied to allylic systems by using Pauling's τ -bond model for double bonds (cf. [28] and ref. cit. therein). Its use in the description of the urogen-octanitrile conformation is based on the observation that the pyrrolic $C(\alpha)-C(\beta)$ bonds (1.37 Å) possess higher double bond character than the $C(\beta)-C(\beta')$ bonds (1.43 Å; cf. Tab. 2, Exper. Part).

In Fig. 6 sind die Newman-Projektionen entlang der vier nicht-äquivalenten $(C(meso)-C(\alpha))$ -Bindungen zusammengestellt, aus denen hervorgeht, dass jeweils eines der beiden Methylen-H-Atome zumindest in Richtung auf eine zur $(C(\alpha)-C(\beta))$ -Bindung synplanare Stellung hintendiert. Fig. 7 beschreibt die Konformation der beiden nicht-äquivalenten Acetonitril-Ketten anhand von Newman-Projektionen entlang der $(C(\beta))$ -Bindungsachsen. Während bei der Acetonitril-Kette an C(2) eines der beiden Methylen-H-Atome H(2¹2) annähernd synplanar zur $(C(\beta)-C(\alpha))$ -Bindung orientiert

Fig. 6. Konformation des makrocyclischen Gerüstes anhand der Newman-Projektionen entlang der $(C(\text{meso}) - C(\alpha))$ -Bindungen*)

*) Newman projections along the four nonequivalent $C(meso)-C(\alpha)$ bonds illustrate an inclination towards synplanar orientation of one H-atom of each meso-methylene position with the adjacent pyrrole double bond.

ist, weicht die Konformation der Acetonitril-Kette an C(7) von der aufgrund des τ -Modells erwarteten deutlich ab. Dafür ist an diesem Pyrrol-Ring die Propionitril-Kette (an C(8)) so orientiert, dass eines ihrer H-Atome an C(β_1) (H(8¹2)) synplanar zu C(β')-C(α') zu stehen kommt (vgl. *Fig.* 8). Da umgekehrt die Propionitril-Kette am anderen Pyrrol-Ring (Projektion C(3¹)-C(3)) nahezu senkrecht zur Pyrrol-Ringebene steht, dürfte eine Kopplung der Seitenketten-Konformation durch *van der Waals*-Wechselwirkungen vorliegen.

Eine hyperkonjugative $(C(\beta)-C\equiv N)$ -Wechselwirkung vom Pyrrol-Ring auf die Acetonitril-Seitenkette sollte als Auslenkung des Nitril-C-Atoms der im ungestörten Fall auf einer Gerade liegenden Atome $C(\beta 1)-X\equiv N$ in Richtung Pyrrol-Kern in Erscheinung treten, ganz gleich, ob man diese als $(\pi(C(\alpha)C(\beta)) \rightarrow \pi(CN)^*)$ - oder als $(\tau(C(\alpha)C(\beta)) \rightarrow \tau(CN)^*)$ -Hyperkonjugation auffasst. Für eine der beiden Acetonitril-Ketten (an C(2)) scheint eine knapp signifikante Abwinkelung $(178,5(4)^\circ)$ beobachtbar, die gemäss der Seitenansicht von der *meso*-Position C(10) aus (vgl. *Fig. 6*) auch in die erwartete Richtung weist. Der kürzeste intermolekulare Abstand – abgesehen von den in *Fig. 2* eingezeichneten H-Brücken zum Tetrahydrofuran-O-Atom – involviert das Nitril-N-Atom der anderen Acetonitril-Seitenkette (an C(7)) sowie die Propionitril-Kette am C(8) eines benachbarten Moleküls: Mit $d(CN(73)\cdots H-C(\beta)H(82; 2-x,y,2-z)) = 2,48$ Å kann jedoch lediglich von einer schwachen Wechselwirkung gesprochen werden; ob dadurch eine Störung der ebenfalls nur marginal auftretenden Nitril-Abwinkelung verursacht wird, muss offengelassen werden.

Die Konformation der Propionitril-Ketten um die $(C(\beta 1')-C(\beta 2'))$ -Bindungen (vgl. *Fig. 9*) nimmt sich wie eine schöne Illustration des *gauche*-Effektes aus: die beiden Bindungen $(C(\beta')-C(\beta 1')$ und $C(\beta 2')-CN)$ weichen im einen Fall lediglich um 0,5°, im anderen um nicht mehr als 3° vom Idealwert 60° ab, wobei die CN-Gruppe antiperiplanar zu der durch Pyrrolkern-Induktion elektropositiveren $(C(\beta 1')-H)$ -Bindung ausgerichtet ist (besonders deutlich sichtbar bei der Propionitril-Kette an C(8)).

Fig. 10 informiert über eine nachträglich durchgeführte Modellrechnung [29] zur Konformation der Modellverbindung 3-(Cyanomethyl)pyrrol. Bereits in 3-21G-Approximation positioniert diese die Seitenkette im lokalen Minimum von 108°, welches mit einem der beiden Kristallstruktur-Torsionswinkel (an C(2), vgl. *Fig. 7*) nahezu perfekt übereinstimmt. Erweiterung des Basissatzes auf 6-31G* verschiebt zwar das relative Minimum in Richtung perfekter Synplanarität eines allylischen H-Substituenten an $C(\beta)$ im Sinne des τ -Modells, jedoch dabei den grösseren bestimmten Torsionswinkel (110,1°) noch um einige Grad überschreitend (116°). Die Energiebarriere zwischen relativem Minimum und relativem Maximum, welches letztere durch eine negative Frequenz als Sattelpunkt auf der Potentialfläche eindeutig bestimmt ist, beträgt allerdings lediglich 0,66 kcal/mol (3-21G-Basis; bzw. 0,70 kcal/mol mit 6-31G*-Basis), und es erstaunt daher nicht, dass die sterischen Gegebenheiten in der aktuellen Kristallstruktur zu leicht abweichenden BETA1-Werten Anlass geben ¹²).

¹²) Sterische Gründe sind anscheinend ebenfalls dafür verantwortlich, dass das aus dieser wie auch der *ab initio* Rechnung an But-3-ennitril [30] resultierende absolute Minimum nur bei α -unsubstituierten Vinyl- oder Aryl-Derivaten beobachtet wird: (E)-Hex-3-ennitril besitzt im Kristall mit BETA1 = 4,1° eine nahezu ungestörte Idealgeometrie [31].

Fig. 7. Konformation der Acetonitril-Seitenketten: Newman-Projektionen entlang der $(C(\beta I) - C(\beta))$ -Bindungen*)

*) Whereas in the acetonitrile side chain at C(2) one of the methylene H-atoms H(2¹2) is nearly symplanar with respect to C(β)=C(α), the conformation of the acetonitrile side chain at C(7) deviates significantly from the one expected according to the τ-model.

Angesichts der dipolaren Natur der CN-Gruppe ist noch die Frage aufzuwerfen, ob nebst der Konformation der Seitenketten nicht auch die beobachtete zentrosymmetrische Kristallsymmetrie als Resultat stereoelektronischer Effekte aufzufassen ist. In der Geometrie der asymmetrischen Einheit baut sich stufenweise ein beträchtliches Dipolmoment von über 10 Debye¹³) auf (vgl. *Fig. 1*), um sich dann durch symmetriebedingte Äquivalenz wieder zu annihilieren. Die Minimisierung der Dipole erfolgt naturgemäss ohne weitere Fixierung der Mikrodipole beispielsweise durch H-Brücken, wie dies aus den Stereoprojektionen des Kristallgitters in *Fig. 3* und 4 hervorgeht. Entlang der aprotischdipolaren Kontaktzone erfolgt der elektrostatische Ausgleich durch entgegengesetzte Dipolausrichtung der symmetrieverwandten Propio- und Acetonitril-Ketten. Dass eine intermolekulare bindende $(n(CN) \rightarrow \pi(CN)^*)$ -Wechselwirkung wohl als höchst marginal zu betrachten ist, ist nicht nur durch die Linearität der CN-Gruppen innerhalb der

¹³) Semiempirische AM1-Dipolmomente werden hier als Vergleichswerte zu Literatur-Referenzen [25] aufgeführt; in unserem Zusammenhang messen wir jedoch den aus der *ab initio* Rechnung gewonnenen Werten mindestens gleiches Gewicht bei.

Fig. 8. Konformation der Propionitril-Seitenketten: Newman-Projektionen entlang der $(C(\beta I')-C(\beta'))$ -Bindungen*)

*) The conformation of the propionitrile side chain at C(8) is almost perfectly staggered with respect to $C(\beta)=C(\alpha)$, whereas the one at C(3) adopts a nearly eclipsed conformation according to the τ -model. Since the acetonitrile side chain at the pyrrole ring carrying the latter propionitrile chain is nearly optimally staggered, a coupling of the side chain conformations through *van der Waals* interactions seems to be effective (*cf.* also *Fig. 4*).

Messgenauigkeit angedeutet, sondern auch durch die intermolekularen Abstände $d(C \equiv N \cdots C \equiv N)$, welche in keinem Falle 3,4 Å unterschreiten. Eine aus der Literatur negativ evidente Korrelation zwischen Dipolmoment der Basis und Zentrosymmetrie der Raumgruppe [25] [26] könnte hier wohl deshalb ihre Ausnahme von der Regel gefunden haben, weil die asymmetrische Einheit nur aus einer Molekülhälfte besteht und eine annihilierende Kopplung der Dipolmomente intramolekular erfolgen kann. Aufgrund der aus der Kristallpackungsanalyse ersichtlichen intermolekularen Dipolausrichtung in den aprotisch-dipolaren Kontaktzonen, die bemerkenswerterweise über kürzere Distanzen erfolgt als die intramolekulare Kopplung, ist jedoch anzunehmen, dass zumindest im vorliegenden Fall die interresiduale (Dipol-Dipol)-Minimisierung eine massgebliche Kristallpackungsdeterminante darstellt.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und dem Stipendienfonds der chemischen Industrie. C. Lehmann dankt Herrn Prof. Dr. K. Müller (F. Hoffmann-La Roche AG) für die Bereitstellung des Roche Molecular Modelling Programmes MOLOC, sowie Herrn Prof. Dr. B. Giese

Fig. 9. Konformation der Propionitril-Seitenketten: Newman-Projektionen entlang der $(C(\beta t')-C(\beta 2'))$ -Bindungen*)

*) The conformations of the propionitrile side chains around the $C(\beta 1')-C(\beta 2')$ bonds seem to present a nice illustration of a (generalized) gauche effect: the torsion angle between the two more electronegative substituents $(C(\beta) \text{ and } CN)$ at the $C(\beta 1')-C(\beta 2')$ bond deviate in both cases by less than 3° from 60°, and the CN group is antiperiplanar to one of the $C(\beta 1')-H$ bond.

und *R. Batra* (Institut für Organische Chemie der Universität Basel) für eine Einführung in die Handhabung elektronischer Methoden zur Strukturberechnung; zusätzliche finanzielle Unterstützungen wurde durch die *G. S. Rosenkranz-* und *T. Reichstein-*Stiftungen gewährt. Herr *W. Iwanowski* (†, Mont Blanc, 9. VII. 1986) hat wesentliche Beiträge zur Ausarbeitung der Synthese der Monopyrrol-Vorläufer geleistet. Herrn Dr. *J. Meili* verdanken wir die Aufnahme von Massenspektren, Frl. *B. Brandenberger* von NMR- und Herrn *H. Hediger* von UV-Spektren, Frau *H. Zass* die freundliche Hilfe bei der Reinschrift der Endfassung.

Experimenteller Teil

1. Allgemeines. AcOEt über CaH₂ dest.; BuLi in Hexan (*Fluka, pract.*), vor Gebrauch titriert nach [32]; CH₂Cl₂ über CaH₂ dest.; MeI (*Fluka, puriss.*), über Alox BI filtriert; (i-Pr)₂NH (*Fluka, puriss. p. a.*), dest. über CaH₂; 1,2-Dimethoxyethan (*Fluka, puriss. p. a.*); *N*,*N'*-Dimethylethylen-Harnstoff (DMEU) (*Fluka, purum*), dest. über CaH₂; CH₂=N⁺Me₂I⁻ hergestellt nach [15]; Et₃N (*Fluka, puriss.*); Et₂O über NaH dest.; MeCN (*Fluka, puriss. p. a.*), über Mg(OMe)₂ 3 h unter Rückfluss gekocht, dest.; THF (*Fluka, purum*), vor Gebrauch über Na/Benzophenon dest. Handschuh-

Fig. 10. Torsionsprofil entlang BETA1 (α - β - β ¹- β ²) aus einer ab initio Rechnung an 3-(Cyanomethyl)pyrrol*)

*) Torsional profile obtained from a series of geometry optimized *ab initio* calculations [29] of 3-(cyanomethyl)pyrrole with the angle BETA1 kept constrained. The relative minima and maxima were found by full optimization of the structure, whereas the latter were characterized as saddle points on the energy hypersurface by one negative frequency. The X-ray structure data are reproduced reasonably well by this profile, even by application of the smaller basis set 3-21G.

kasten: Dri-Lab DLX 001-S-P/Dry-Train HE-493, Vacuum Atmospheres Corp., Sauerstoffgehalt ≤ 5 ppm. Säulenchromatographie im 'flash'-Verfahren [33] auf Kieselgel (Merck, Typ 60, Korngrösse 0,040–0,063 mm), Kieselgel G (nach Stahl für DC, Merck, Typ 60) oder Alox (Aluminiumoxid, Woelm), nähere Angaben im Text. DC: sofern nichts anderes erwähnt, Fertigplatten Kieselgel 60, Merck, Schichtdicke 0,25 mm, Anfärbung der Pyrrol-Derivate mit Ehrlich-Reagenz (1% 4-(Dimethylamino)benzaldehyd in EtOH/konz. HCl 1:1) HPLC: Eigenbau-System von Dr. J. Schreiber (ETH-Zürich), Säulen nach 'slurry'-Methode gepackt [34]; Det. = Detektion, t_R in min. IR: in CHCl₃ oder KBr; nur wichtige Banden. NMR (δ -Werte in ppm bezogen auf TMS): in CDCl₃, wo nichts anderes erwähnt.

2. Experimente zu Schema 2. – 2.1. Regioselektive Alkylierung des quaternären Methyl-Iodids 5 von 3-(Cyanomethyl)-4-[(dimethylamino)methyl]pyrrol (4) mit $CH_2=N^+Me_2I^-$. Unter N₂ füllte man 500 mg (1,640 mmol) 5¹⁴), 334 mg (1,80 mmol) $CH_2=N^+Me_2I^-$ and 6,0 ml abs. MeCN in eine Ampulle mit Magnetrührer. Die mit Vakuumschlauch und Hahn gasdicht verschlossene Ampulle wurde nach Ausfrieren in fl. N₂ i. HV. zugeschmolzen. Man stellte die Ampulle in ein auf 70 ± 2° vorgeheiztes Ölbad und liess während 3 Tagen bei dieser Temp.

¹⁴) Hergestellt nach [1] [11].

HELVETICA CHIMICA ACTA – Vol. 80 (1997)

Fig. 11. Kumulation der Dipolmomente in der asymmetrischen Einheit der zentrosymmetrischen Kristallstruktur von 10*)

*) The build-up of a high dipole moment within the unit cell is verified by calculations at various *ab initio* and semiempirical levels. A negative correlation of basis dipole moment and centrosymmetry of space group evidenced in the literature [25] [26] may have found its exception from the rule in the present case, because the asymmetric unit consists here only of one half of the molecule. A distant intramolecular dipole-dipole coupling, however, is by no means more probable than its close intermolecular compensation. Therefore, the present X-ray structure may be considered as an example to illustrate the impact of interresidual dipole-dipole minimization on crystal packing.

reagieren, wobei für gute mechanische Durchmischung der Suspension gesorgt wurde. Darauf öffnete man die Ampulle wiederum unter N₂ und sammelte das weisse, mikrokristalline Präzipitat auf einer tarierten 1-cm-Glasfilternutsche D3, wusch mit 2 1-ml-Portionen abs. MeCN nach und trocknete die Nutsche samt Inhalt während 16 h i. HV: 736 mg (1,50 mmol, 92%) analysenreines 3-(Cyanomethyl)-2-[(dimethylammonio)methyl]-4-[(trimethylammonio)methyl]pyrrol-diiodid (6). Schmp. 190° (Zers. im zugeschmolzenen Röhrchen). IR (KBr; Abb. in [3], S. 127): 3210s, 3040w, 3010m, 2950 (sh), 2920s, 2820w, 2800w, 2775w, 2700s, 2585w, 2560w, 2440w, 2255w, 1523w, 1470s, 1455 (sh), 1440 (sh), 1422m, 1413m, 1404m, 1400m, 1390m, 1370m, 1295w, 1252s, 1240w, 1215w, 1183w, 1160w, 1140w, 1124w, 1110w, 1100w, 1048w, 1008m, 990m, 970m, 926m, 922s, 870s, 830w, 812w, 732w, 720w, 653w, 620w. ¹H-NMR ((D₆)DMSO, 300 MHz; Abb. in [3], S. 127): 2,79 (s, Me₂NH⁺CH₂); 3,04 (s, Me₃N⁺CH₂); 4,05 $(s, CH_2CN); 4.37 (s, Me_2NH^+CH_2); 4.46 (s, Me_3N^+CH_2); 7.32 (d, J = 3, H-C(5)); 9.40 (br., NH); 11.52 (br., NH); 11.52$ $Me_2NH^+CH_2$). Differenz-NOE-Experimente: a) Einstrahlung bei 3,04 ppm ($Me_3N^+CH_2$) bewirkt Signalverstärkungen bei 4,46 ppm (Me₃N⁺CH₂); 4,05 ppm (CH₂CN) und bei 7,32 ppm (H-C(5); vgl. Fig. 12). b) Einstrahlung auf das d bei 7.32 ppm (H-C(5)) bewirkt Signalverstärkungen bei 3,04 und 4,46 ppm (Me₃N⁺CH₂) sowie bei 11,52 ppm (Me₂NH⁺CH₂). c) Einstrahlung bei 2,79 ppm (Me₂NH⁺CH₂) hat Signalverstärkungen bei 4.37 ppm ($Me_2NH^+CH_2$) und den beiden NH-Resonanzen (9,40 und 11,52 ppm) zur Folge. ¹³C-NMR ((D₆)DMSO, 75 MHz, DEPT-Technik; Abb. in [3], S. 128): 12,1 (CH₂CN); 41,2 (CH₂N⁺Me₃); 49,7 (CH₂N⁺Me₃); 50,5 (CH₂NH⁺Me₂); 59,0 (CH₂NH⁺Me₂); 108,7, 114,7, 118,4, 118,8 (C(2), C(3), C(4), CN); 124,5 (C(5)). Anal. ber. für $C_{13}H_{24}I_2N_4$: C 31,86, H 4,94, I 51,78, N 11,43; gef.: C 31,76, H 4,89, I 52,02, N 11,34.

2.2. 4 - (2 - Cyanoethyl) - 3 - (cyanometyhl) - 2 - [(dimethylamino)methyl]pyrrol (7). Eine auf -30° gekühlte Lsg. von 9,30 ml (65,3 mmol) (i-Pr)₂NH in 1,45 l H₂O-freiem THF versetzte man mit 29,8 ml einer 2,19M Lsg. von BuLi in Hexan (65,3 mmol). Nach 30 min Rühren bei dieser Temp. wurde auf -78° gekühlt, 3,76 ml (71,4 mmol) abs. MeCN zugespritzt und 1 h bei -78° gerührt. Während 15 min tropfte man anschliessend mittels einer gasdichten Spritze eine Lsg. von 10,00 g (20,40 mmol) 6 in 145 ml H₂O-freiem THF, 100 ml DMEU und 12 ml (i-Pr)₂NH zu.

Fig. 12. Konstitutionsnachweis für das Pyrroldiammonium-iodid 6 mittels ¹H-NMR-NOE-Differenzspektroskopie*)

*) Evidence for regioselective alkylation of the pyrrole nucleus according to Scheme 2 obtained by ¹H-NMR NOE difference spectroscopy: irradiation with the frequency of the quaternary ammonium Me group (b at 3.04 ppm) enhances signal intensities at 4.46 ppm (e), 4.05 ppm (c), and of the vinylic doublet resonance at 7.32 ppm (f). The CH₂ resonance at 4.37 ppm (d) is thereby only marginally affected, yet strongly enhanced upon irradiation with the tertiary ammonium Me frequency at 2.79 ppm (a; experiment not shown).

Nach 6 h Rühren bei -78° quenchte man mit 50 ml 2M NH₄Cl-Lsg., rührte noch 5 min bei dieser Temp. und stellte das Gemisch über Nacht in den Tiefkühler. Man filtrierte durch Watte, engte ein und nahm den Rückstand in 0,51 CH₂Cl₂ auf, worauf man mit 6 0,5-1-Portionen 1M Phosphat-Puffer pH 7 extrahierte und die wässr. Phasen je mit 5 0,5-l-Portionen CH2Cl2 wusch. Die org. Phase enthielt fast die gesamte Menge DMEU, welches daraus destillativ zurückgewonnen werden konnte. Die vereinigten wässr. Phasen wurden im Eisbad mit 4N NaOH (ca. 1) auf pH 14 gebracht und anschliessend 4 mal mit je 11 CH₂Cl₂ extrahiert. Nach Einengen i. RV. und Trocknen am Hausvakuum erfolgte eine 'flash'-Chromatograpie an 5×20 cm (200 g) Kieselgel 60 mit 1,21 1,2-Dimethoxyethan/Et₃N 100:1. Die Mischfraktionen wurden rechromatographiert, die Produktfraktionen aus beiden Chromatographien eingeengt und 4 h i. HV. getrocknet: 2,01 g (9,29 mmol, 46%) chromatographisch einheitliches Produkt 7 als leicht bräunlicher Festkörper. Zur Analyse wurde eine Probe zweimal aus CH₂Cl₂/Hexan umkristallisiert. Die spektroskopischen Daten stimmten mit früher [3] [9] aus unabhängiger Synthese gewonnenem Material überein. Schmp. 114-115°. DC (Et₂O/MeOH (NH₃ ges.) 9:1): R_f 0,38. DC (1,2-Dimethoxyethan/Et₃N 100:1): R_f 0.23. IR (CHCl₃; Abb. in [3], S. 131): 3460s, 3350w, 3135w, 2950s, 2865m, 2825s, 2780s, 2255m, 1527w, 1470 (sh), 1458s, 1417m, 1362m, 1350 (sh), 1323w, 1297w, 1174m, 1147w, 1097m, 1083w, 1042m, 1015 (sh), 1005m, 960w, 917w. ¹H-NMR (300 MHz; Abb. in [3], S. 131): 2,22 (s, Me_2N); 2,61 (t, J = 7, CH_2CH_2CN ; 2,85 (t, J = 7, CH_2CH_2CN); 3,38 (s, $CH_2-C(5)$); 3,53 (s, CH_2CN); 6,64 (d, J = 2,6, H-C(2)); 8,5-8,8 (br., HN). ¹³C-NMR (75 MHz): 12,7, 18,8, 21,4 (3t, CH₂CN, CH₂CH₂CN); 45,0 (q, Me₂N); 54,3 (t, CH₂-(5)); 107,8, 118,4, 119,7, 126,9 (4 der erwarteten 5s aufgelöst, C(3), C(4), C(5), 2 CN); 115,9 (d, C(2)). MS: 217 (4), 216 (21, M⁺), 215 (6), 173 (14), 172 (97,7, [M-NMe₂]⁺), 171 (14), 133 (12), 132 (38), 131 (100, $[M-HNMe_2-CH_2CN]^+$, 106 (11), 105 (10), 104 (16), 77 (15), 58 (11), 57 (11), 46 (29), 45 (25), 44 (42), 43 (13), 42 (16), 41 (12), 28 (10). Anal. ber. für $C_{12}H_{16}N_4$: C 66,64, H 7,46, N 25,90; gef.: C 66,70, H 7,44, N 26,04.

2.3. 4-(2-Cyanoethyl)-3-(cyanomethyl)-2-(methoxymethyl)pyrrol (9). Eine Lsg. von 28 mg (0,13 mmol) 7 in 7 ml trockenem CH₂Cl₂ und 8 ml trockenem Et₂O wurde unter N₂ mit 180 µl (2,89 mmol) MeI versetzt. Nach wenigen min begann sich ein Niederschlag abzuscheiden, und nach 27 h Rühren bei RT. konnte gemäss DC in der überstehenden Lsg. kein 7 mehr festgestellt werden. Abpipettieren der überstehenden Lsg., Waschen des Nieder-

schlages mit Et₂O und 16 h Trocknen i. HV. ergab 46,8 mg quaternäres Ammonium-Salz 8 als hellgelben Festkörper (vgl. [3] [9]). Unter Feuchtigkeitsausschluss wurden 500 mg (1,40 mmol) 8 in einem Autoklaven mit 50 ml abs. MeOH versetzt. Man verschloss diesen gasdicht und heizte 10 min im Metallbad bei 200°, worauf man sofort im Eisbad kühlte. Die Lsg., in welcher gemäss DC (Kieselgel, 1,2-Dimethoxyethan/Et₃N 100:1) kein tertiäres Amin 7 (R_e 0,23, violettrote Färbung mit Ehrlich-Reagenz) mehr sichtbar war, sondern ausschliesslich das im Ehrlich-Test braun verfärbende 9 (R_f 0,82), wurde auf ca. 1 ml eingeengt. Der Rückstand wurde auf eine mit AcOEt/ Hexan 3:2 aufgezogene 2×16 cm Kieselgel-G60-Säule aufgetragen unter Verwendung von 3 zusätzlichen 1-ml-Portionen AcOEt, wonach mit 500 ml AcOEt/Hexan 3:2 9 eluiert wurde: nach Einengen und Trocknen i. HV. während 15 h 220 mg (1,08 mmol, 78 %)¹H-NMR-einheitliches 9. Dieses konnte durch Kristallisation aus MeCN/ Et₂O (isotherme Diffusion bei RT.) als zentimeterlange, farblose Nadeln erhalten werden. Schmp. 87-88°. DC (Kieselgel, 1,2-Dimethoxyethan/Et₃N 100:1): R_f 0,82. DC (Kieselgel, AcOEt): R_f 0,50. DC (Fertigplatten Alox Typ E, Merck, Schichtdicke 0,25 mm, AcOEt/Hexan 3:2): R₆ 0,29. IR (CHCl₃; Abb. in [3], S. 136): 3470s, 3350m, 2935m, 2900m, 2880m, 2860 (sh), 2825m, 2255m, 1528w, 1465 (sh), 1452m, 1425 (sh), 1417m, 1377m, 1365 (sh), 1323w, 1300w, 1157w, 1090s, 1047w, 946m, 903m. ¹H-NMR (CD₃CN, 300 MHz, Abb. in [3], S. 136): 2,61 $(t, J = 7, CH_2CH_2CN)$; 2,79 $(t, J = 7, CH_2CH_2CN)$; 3,26 (s, CH_2OMe) ; 3,58 (s, CH_2CN) ; 4,35 (s, CH₂OMe); 6,65 (d, J = 2, H-C(2)); 9,0-9,3 (br., HN). ¹³C-NMR (CD₃CN, 75 MHz): 13,2, 19,2, 22,1 (3t, CH₂CN, CH₂CH₂CN); 58,0 (q, CH₂OMe); 65,6 (t, CH₂OMe); 110,2, 120,0, 120,3, 121,2, 127,9 (5s, C(3), C(4), C(5), 2 CN); 117,3 (d, C(2)). MS: 204 (10), 203 (71, M⁺), 202 (7), 176 (6, [M-HCN]⁺), 173 (15), 172 (100, $[M-OMe]^+)$, 171 (7), 163 (48, $[M-CH_2CN]^+)$, 147 (6), 145 (4), 143 (4), 132 (43), 131 (99, [*M*-MeOH-CH₂CN]⁺), 118 (5), 104 (29), 77 (14). Anal. ber. für C₁₁H₁₃N₃O: C 65,01, H 6,45, N 20,67; gef.: C 65,11, H 6,38, N 20,45.

3. Experimente zu Schema 3. Tetramerisierung von 9 zu Uroporphyrinogen-(Typ I)-octanitril (10). Im Handschuhkasten versetzte man eine Lsg. von 135,0 mg (0,664 mmol) kristallinem 9 in 25,0 ml MeOH tropfenweise unter Rühren mit 10,0 ml HCOOH (resultierende Anfangs-Monomer-Konzentration $c_0[9] = 1,9 \cdot 10^{-2}$ M). Ein weisser Niederschlag begann sich nach wenigen min abzuscheiden, und nach 1 h Rühren wurde das Gemisch bei RT. i. HV. eingeengt. Der i. HV. getrocknete Rückstand wurde in 30,0 ml MeCN gelöst, und nach Abzweigen von 750 µl (2,5%) für HPLC (vgl. Schema 3) aus dieser Lsg. an 3 g Kieselgel G60 adsorbiert. Das i. HV. getrocknete Adsorbat applizierte man auf eine vorgängig mit H₂O-ges. CH₂Cl₂ konditionierte 3 × 10 cm Kieselgel-G60-Säule. Nach Elution eines Säulenvolumens H₂O-ges. CH₂Cl, wechselte man auf das Lsgm.-System CH₂Cl₂/THF/H₂O 230:20:1 und eluierte die folgenden, langsam laufenden Produktzonen (Fraktionsgrösse ca. 30 ml): Die Fraktionen 4-9 enthielten nach Eindampfen und Trocknen i. HV. bis zur Gewichtskonstanz 61,4 mg (0,090 mmol, 55%) 10 als schneeweissen, bei 245° schmelzenden Festkörper, dessen ¹H-NMR-Spektrum (CD₃CN, 300 MHz) nicht von früher [1] synthetisiertem Material zu unterscheiden war. Die Fraktionen 12-15 enthielten nach Eindampfen und Trocknen i. HV. 5,8 mg (0,008 mmol, 5%) Isomerengemisch II/III (zur Charakterisierung vgl. [1]), wonach eine auf DC nicht mehr sichtbare Menge des Isomers IV (vgl. [1]) zusammen mit polaren Oligomeren mit MeCN/THF 1:1 vollständig eluiert wurden: nach Eindampfen und Trocknen i. HV. 45,8 mg (41%) ockerfarbener Festkörper. Polares Material aus einem Analogansatz ausgehend von 2-(Hydroxymethyl)-4-(cyanomethyl)-1H-pyrrol-3-propionitril wurde als Gemisch linearer Oligopyrromethane (n > 10) identifiziert (vgl. Abschnitt 12.2 in [1] sowie [3]).

Zur spektroskopischen Charakterisierung wurde eine Probe von 10 quantitativ aus MeCN/Et₂O durch isotherme Diffusion bei RT. kristallisiert (vgl. Fig. 13, a). Schmp. 244-245°. DC (Kieselgel, CH₂Cl₂/THF (H₂Oges.) 4:1): R_t 0,73 (Entwicklung durch Luftoxidation, Iod oder Ehrlich-Reagenz (lachsrote Färbung)). UV/VIS $(CH_3CN, vgl. Fig. 13, b): \lambda_{max} = 228 \text{ nm} (e = 25600). \text{ IR (KBr, vgl. Abb. in [3], S. 139): 3430m, 3380s, 3340s, 3340s$ 3075w, 2925m, 2910m, 2880w, 2245s, 1608m, 1532w, 1468m, 1453m, 1425s, 1418s, 1405m, 1325w, 1309m, 1250 (sh), 1240m, 1218m, 1197m, 1157w, 1082w, 1017w, 915m, 910m, 810w, 730w, 677m, 650m, 600m, 588m. 1H-NMR $(300 \text{ MHz}; \text{Abb. in [3]}, \text{S. 140}): 2.55 (t, J = 7, 4 \text{ CH}_2\text{CH}_2\text{CN}): 2.80 (t, J = 7, 4 \text{ CH}_2\text{CH}_2\text{CN}): 3.53 (s, 4 \text{ CH}_2\text{CN}): (t, J = 7, 4 \text{ CH}_2\text{CH}_2\text{CN}): (t, J = 7, 4 \text{ CH}_2\text{CH$ 3,77 (s, 4 meso-CH₂); 8,55 (br. s 4 HN). ¹³C-NMR ((D₆)DMSO, 75 MHz, vgl. Abb. in [3], S. 140; die Zuordnung erfolgte durch Vergleichen mit 2,3,7,8,12,13,17,18-Oktakis(cyanomethyl)- resp. Oktakis(2'-cyanoethyl)porphyrinogenen, vgl. [1] [11]): 12,1 (t, CH₂CN); 18,4, 19,7 (2t, CH₂CH₂CN); 20,9 (t, meso-CH₂(5,10,15,20)); 105,9 (s, C(2), C(7), C(12), C(17)); 113,9 (s, C(3), C(8), C(13), C(18)); 119,7, 120,5 (2s, C(1), C(6), C(11), C(16), C(4), C(9), C(14), C(19)); 125,4 (2s, 8 CN). EI-MS: 685 (0,3), 684 (0,6, M⁺), 661 (0,3), 660 (1,2), 659 (2,6, [MH-CN]⁺), 658 (0,3), 645 (0,3), 644 (0,5, [M-CH₂CN]⁺), 636 (0,4), 635 (1,1), 634 (2,6, [MH₂-2CN]⁺), 633 (0,4), 621 (0,3), 620 (0,8), 619 (0,9, [MH-CN-CH₂CN]⁺), 609 (0,6, [MH₃-3CN]⁺), 605 (0,4, [MH-2CH₂CN]⁺), 595 (0,4), 594 $(0,5, [MH_2-2CN-CH_2CN]^+), 580 (0,3, [MH_2-CN-2CH_2CN]^+), 577 (0,2), 368 (2), 358 (1), 344 (2), 296 (3), 41$ (61, MeCN⁺), 40 (6, MeCN⁺), 28 (60, HCNH⁺), 27 (56, HCN⁺), 26 (10, CN⁺), 18 (100).

Fig. 13. a) Kristalle von 10 durch isotherme Diffusion aus $MeCN/Et_2O$; b) UV-Spektrum der unter Inertatmosphäre in MeCN gelösten Substanz

Kristalle für die Röntgen-Strukturanalyse wurden nach der Methode isothermer Diffusion bei RT. aus THF/H₂O gezüchtet. Für die Messung wurde ein ca. $0,6 \times 0,5 \times 0,2$ mm grosser Kristall in eine Kapillare eingeschlossen. Die Kristalldaten und die Resultate der Analyse sind in Tab. 1 zusammengestellt. Zelldimensionen und Intensitäten wurden auf einem Enraf-Nonius-CAD4-Diffraktometer mit Graphit-Monochromator (MoK₄, $\lambda = 0,71068$ Å) gemessen. Die Struktur wurde durch direkte Methoden gelöst (SHELXS 86, vgl. [35]). Die Verfeinerung erfolgte mit der Methode der kleinsten Fehlerquadrate mit SHELX76 (vgl. [36]). Die Nicht-H-Atome wurden anisotrop, die H-Atome an pyrrolischen N-Atomen isotrop verfeinert; die restlichen H-Atome sind jeweils nach stereochemischen Annahmen berechnet und nur deren Temp.-Faktoren verfeinert worden. Bindungslängen und Valenzwinkel sind der Tab. 2, ausgewählte Torsionswinkel den Fig. 6–9 zu entnehmen, wobei die Atome der asymmetrischen Dipyrromethan-Einheit nach den Empfehlungen der IUPAC-IUB [37] (vgl. Fig. 14) numeriert wurden. Die Koordinaten und Temp.-Faktoren wurden beim Cambridge Crystallographic Database Centre, 12 Union Road, Cambridge CB2 1EZ, England, abgelegt.

Summenformel	$C_{40}H_{36}N_{12} \cdot 2C_4H_{20}O$
Molekulargewicht	684.81 + 2.72.12
Raumgruppe	PĪ
a[Å]	9.474
ЫÅI	10.088
c[Å]	12.964
~[°]	74 18
	77 58
μ[] ² [⁰]	68 19
/L] F/T Å 31	1007 8
7	1
$D \left[a \text{ om}^{-3} \right]$	1 75
E E	1,25
r ₀₀₀	404
	1,37
$\Theta_{\max}[\circ]$	25
Anzahl unabhängiger Reflexe	3825
Verwendete Reflexe $I > 3\sigma(I)$	1713
Anzahl Parameter	312
Gewichtssystem ω	$\sigma(F)^{-2}$
Max. Δ/σ	0.07
Max. $\Delta \rho [e Å^{-3}]$	0,19
R	0,042
R _w	0,038

Tab. 1. Kristalldaten und Resultate der Röntgen-Strukturanalyse von 10

Tab. 2. Bindungslängen und Valenzwinkel in der Röntgen-Struktur von 10

Bindungslängen [Å] (Standa	ardabweichu	ngen i	n Klamm	ern)				
C(01)-C(02) 1,3	76(4)	C(01)-N	(2^{1})	1,376(4)	C(02)-C(03)	1,431(4)	$C(02) - C(2^1)$	1,505(4)
C(03)-C(04) 1,3	72(4)	C(03)-C(3 ¹)	1,501(4)	C(04) - C(05)	1,504(4)	$C(04) - N(2^{1})$	1,371(4)
C(05)-C(06) 1,4	95(4)	C(06)-C(07)	1,370(4)	C($06) - N(2^2)$	1,381(4)	C(07)-C(08)	1,431(4)
C(07)-C(7 ¹) 1,5	02(4)	C(08)-C(09)	1,374(4)	C($08) - C(8^1)$	1,501(4)	C(09)-C(10)	1,507(4)
C(09)-N(2 ²) 1,3	78(4)	C(2 ¹)C(2²)	1,463(5)	C(2^{2})-N(2^{3})	1,132(4)	$C(3^1) - C(3^2)$	1,547(4)
C(3 ²)-C(3 ³) 1,4	65(5)	$C(3^3) - N(3^3) = N(3^3) - N$	(34)	1,132(4)	C(7^{1})-C(7^{2})	1,464(5)	$C(7^2) - N(7^3)$	1,137(4)
C(81)-C(82) 1,5	43(4)	$C(8^2) - C(8^2) - C$	8 ³)	1,459(5)	C($8^{3}) - N(8^{4})$	1,141(5)	$C(9^1) - C(9^2)$	1,491(5)
$C(9^1) - C(9^1) = 1,4$	27(4)	C(9 ²)-C(9 ³)	1,454(6)	C(9 ³)-C(9 ⁴)	1,489(6)	$C(9^4) - O(9^1)$	1,404(5)
Valenzwinkel [°]									
C(02) - C(01) - N(2)	¹) 10	06,4(3)	C(01)	-C(02)-	C(03)	108,3(3)	C(01)	$-C(02)-C(2^{i})$	125,2(3)
C(03)-C(02)-C(2	¹) 12	26,3(3)	C(02)	-C(03)-	C(04)	106,8(3)	C(02)	$-C(03)-C(3^{1})$	127,6(3)
C(04) - C(03) - C(3)	¹) 12	25,5(3)	C(03)	-C(04)-	C(05)	129,8(3)	C(03)	$-C(04)-N(2^{1})$	107,7(3)
C(05) - C(04) - N(2)	¹) 12	2,3(3)	C(04)	-C(05)-	C(06)	116,0(3)	C(05)	-C(06)-C(07)	129,6(3)
C(05) - C(06) - N(2)	2^2) 12	23,4(3)	C(07)	-C(06)-	$N(2^2)$	107,0(3)	C(06)	-C(07)-C(08)	108,4(3)
C(06) - C(07) - C(7)	¹) 12	25,3(3)	C(08)	-C(07)-	$C(7^{1})$	126,2(3)	C(07)	-C(08)-C(09)	106,8(3)
C(07)-C(08)-C(8	¹) 12	26,7(3)	C(09)	-C(08)-	$C(8^{1})$	126,5(3)	C(08)	-C(09)-C(10)	130,8(3)
C(08) - C(09) - N(2)	(2^2) 10)7,9(3)	C(10)	-C(09)-	$N(2^{2})$	120,8(3)	C(02)	$-C(2^{1})-C(2^{2})$	113,3(3)
$C(2^1) - C(2^2) - N(2$	³) 17	/8,5(4)	C(03)	$-C(3^{1})-6$	C(3 ²)	115,2(3)	C(3 ¹)	$-C(3^2)-C(3^3)$	112,1(3)
$C(3^2) - C(3^3) - N(3$	⁴) 17	79,3(4)	C(07)	$-C(7^{1})-0$	C(7²)	113,0(3)	$C(7^{1})$	$-C(7^2)-N(7^3)$	178,8(4)
$C(08) - C(8^{1}) - C(8^{1})$	²) 11	4,1(3)	C(81)	$-C(8^2)-6$	C(8 ³)	112,6(3)	C(8 ²)	$-C(8^3)-N(8^4)$	179,6(4)
$C(9^2) - C(9^1) - O(9^2)$	¹) 10	05,5(3)	C(9 ¹)	$-C(9^2)-6$	C(9 ³)	104,9(4)	C(9 ²)	$-C(9^3)-C(9^4)$	103,0(4)
$C(9^3) - C(9^4) - O(9^4)$	¹) 10)6,6(4)	C(01)	$-N(2^{1})-$	C(04)	110,8(3)	C(06)	$-N(2^3)-C(09)$	109,0(3)
$C(9^1) - O(9^1) - C(9^1)$	⁴) 10	9,6(3)							

Fig. 14. Numerierung der Atome in der Kristallstruktur von **10** nach IUPAC-IUB [37] unter Berücksichtigung der Molekülsymmetrie

LITERATURVERZEICHNIS

- [1] G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Früh, Y.-B. Xiang, K. Inomata, H.-Buser, J. Schreiber, E. Zass, A. Eschenmoser, *Helv. Chim. Acta* 1987, 70, 1115–1172.
- [2] R. Micura, M. Bolli, N. Windhab, A. Eschenmoser, Angew. Chem. 1997, 109, 899-902; ibid. Int. Ed. 1997, 36, 870-873.
- [3] C. Lehmann, 'Untersuchungen über Uroporphyrinogen-octanitrile', Diss. Nr. 8215, ETH-Zürich, 1987.
- [4] A. Eschenmoser, 'Über organische Naturstoffsynthese: Von der Synthese des Vitamin B₁₂ zur Frage nach dem Ursprung der Corrinstruktur', Nova Acta Leopold., Neue Folge 1982, 55, Nr. 247, 5–47.
- [5] J. E. Johansen, V. Piermattie, C. Angst, E. Diener, C. Kratky, A. Eschenmoser, Angew. Chem. 1981, 93, 273; ibid. Int. Ed. 1981, 20, 261; R. Waditschatka, A. Eschenmoser, Angew. Chem. 1983, 95, 639; ibid. Int. Ed. 1983, 22, 630; C. Kratky, R. Waditschatka, C. Angst, J. E. Johansen, J. C. Plaquevent, J. Schreiber, A. Eschenmoser, Helv. Chim. Acta 1985, 68, 1312-1337.
- [6] A. Eschenmoser, 'Chemistry of Corphinoids', Ann. N. Y. Acad. Sci. 1986, 471, 108-129.
- [7] A. Eschenmoser, 'Toward a Chemical Etiology of the Natural Nucleic Acids' Structure', in: Proc. Robert A. Welch Found. Conf. Chem. Res. XXXVII, '40 Years of the DNA Double Helix', Robert A. Welch Foundation, Houston, TX, 1993, p. 201-235.
- [8] A. Eschenmoser, Angew. Chem. 1988, 100, 5-40; ibid. Int. Ed. 1988, 27, 5-39.
- [9] M. Ono, R. Lattmann, K. Inomata, C. Lehmann, T. Früh, A. Eschenmoser, Croat. Chem. Acta 1985, 58, 627-645.
- [10] C. Leumann, T. Früh, M. Göbel, A. Eschenmoser, Angew. Chem. 1987, 99, 273; ibid. Int. Ed. 1987, 26, 261.
- [11] T. Früh, 'Zur Chemie der Uroporphyrinogen-octanitrile', Diss. Nr. 8054, ETH-Zürich, 1986,
- [12] U. Kämpfen, 'Untersuchungen über Nitrile der Porphyrinreihe', Diss. Nr. 8749, ETH-Zürich, 1988.
- [13] U. Kämpfen, A. Eschenmoser, Helv. Chim. Acta 1989, 72, 185-195.

- [14] G. H. Cookson, C. Rimington, Biochem. J. 1954, 57, 476; D. Mauzerall, J. Am. Chem. Soc. 1960, 82, 2601.
- [15] J. Schreiber, H. Maag, N. Hashimoto, A. Eschenmoser, Angew. Chem. 1971, 83, 355; ibid. Int. Ed. 1971, 10, 330.
- [16] K. Müller, A. Eschenmoser, Helv. Chim. Acta 1969, 52, 1823.
- [17] L. Tenud, S. Farooq, J. Seibel, A. Eschenmoser, Helv. Chim. Acta 1970, 53, 2059-2069.
- [18] J. M. Muchowski, D. R. Solas, Tetrahedron Lett. 1983, 24, 3455.
- [19] A. Gossauer, 'Die Chemie der Pyrrole', Springer-Verlag, Berlin, 1974.
- [20] Chimia 1985, 39, 147, und dort zit. Lit.
- [21] G. V. Ponomarev, R. P. Evstigneeva, N. A. Preobrazhenskii, J. Org. Chem. USSR 1971, 7, 167.
- [22] G. V. Louie, P. D. Brownlie, R. Lambert, J. B. Cooper, T. L. Blundell, S. P. Wood, M. J. Warren, S. C. Woodcock, P. M. Jordan, *Nature (London)* 1992, 359, 33.
- [23] a) G. Sawitzki, H. G. von Schnering, Angew. Chem. 1976, 88, 616; b) B. von Maltzan, ibid. 1982, 94, 801.
- [24] P. R. Gerber, K. Müller, J. Comput.-Aided Mol. Des. 1995, 9, 251-268.
- [25] A. Gavezzotti, J. Phys. Chem. 1990, 94, 4319.
- [26] J. K. Whitesell, R. E. Davis, L. L. Saunders, R. J. Wilson, J. P. Feagins, J. Am. Chem. Soc. 1991, 113, 3267.
- [27] Y.-B. Xiang, 'Beiträge zur Chemie der α-Aminonitrile', Diss. Nr. 7993, ETH-Zürich, ADAG Druck AG, Zürich, 1986.
- [28] E. Vogel, G. Caravatti, P. Franck, P. Aristoff, C. Moody, A.-M. Becker, D. Felix, A. Eschenmoser, *Chem. Lett. (Tokyo)* 1987, 219 und dort zit. Lit., insbesondere: L. Pauling, *J. Am. Chem. Soc.* 1931, 53, 1367–1400;
 G. G. Hall, J. Lennard-Jones, *Proc. R. Soc. London [Ser.]A* 1951, 205, 357–374; J. Lennard-Jones,
 J. A. Pople, *ibid.* 1950, 202, 166–180; L. Pauling, 'Nature of the Chemical Bond', 3rd edn., Cornell University Press, New York, 1960, Chapt. 5.
- [29] J. B. Foresman, A. Frisch, 'Exploring Chemistry with Electronic Structure Methods', Gaussian Inc., Pittsburgh, USA; Program GAUSSIAN 92/DFT, Revision F.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, J. A. Pople, Gaussian Inc., Pittsburgh PA, 1993.
- [30] M. H. Lien, A. C. Hopkinson, Int. J. Quantum Chem. 1985, 27, 1.
- [31] W. B. Gleason, D. Britton, Acta Crystallogr., Sect. C 1983, 39, 1253.
- [32] S. C. Watson, J. F. Eastham, J. Organomet. Chem. 1967, 9, 165.
- [33] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [34] E. Walter, J. Schreiber, E. Zass, A. Eschenmoser, Helv. Chim. Acta 1979, 62, 899-920.
- [35] G. M. Sheldrick, C. Krüger, R. Goddard, in 'Crystallographic Computing', Ed. G. M. Sheldrick, Oxford University Press, Oxford, 1985, Vol. 3, p. 175-189.
- [36] G. M. Sheldrick, 'SHELX 76, A Program for Crystal Structure Determination', University of Cambridge, England, 1976.
- [37] J. E. Merritt, K. L. Loening, Pure Appl. Chem. 1979, 51, 2251-2304.